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WHEN SETS CAN OR CANNOT BE PRODUCT-DOMINANT

ANUPRIYA SHETTY AND SHANKAR B R

ABSTRACT. Given a finite set A C R, we define
A+A = {a+d |aad cAl,
A-A {a—ad' |a,ad €A},
A.A {ad’ | a,a’ € A},
AJ/A = {a/d' |a,d €A, d #0}.
A set A is said to be sum-dominant or MSTD (More Sums than Differences) if
|A+A| > |A—A| and a set A C R\ {0} is said to be product-dominant or MPTQ
(More Products than Quotients) if |A.A| > |A/A]. In this paper, we shall discuss
several properties of MPTQ sets, investigate techniques of generating an infinite
family of MPTQ sets, and identify some characterizations under which a finite
set of numbers can or cannot be product-dominant. We confirm the existence of
MPTQ sets of perfect squares and justify that n'" powers of prime numbers do not
contain any MPTQ set. We extend the notion of MPTQ sets to the multiplicative
group Z, and recognize their correspondence with the MSTD sets in Zp_1.
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1. INTRODUCTION

Definition 1.1. Given a finite set A C R, we define
A+A = {a+d|ad €A}
A—A = {a—d |ad €A},
AA = {ad |a,d € A},
A/A = {a/d | a,d € A, d #0}.

Since addition is commutative but subtraction is not, we usually expect |A— A| >
|A + A|. The conjecture wrongly attributed to J. H. Conway, says that there are
no finite sets of integers with |A + A| > |A — A|. But Conway is said to have
found the first example of a set A = {0,2,3,4,7,11,12,14} in the 1960s, for which
|[A+ Al =26>25=|A4A— A

A set A is said to be MSTD (More Sums than Differences) if [A + A > |A — A|
and MDTS (More Differences than Sums) if |[A + A] < |A — A| [15]. In a similar
way, a set A C R~ {0} is said to be MPTQ (More Products than Quotients) if
|A.A] > |A/A| and MQTP (More Quotients than Products) if |A.A4| < |A/A]| [3]. In
either case, we say that A is balanced if the cardinalities are equal.

The focus of research in Additive Number Theory has predominantly been on
subsets of integers when it comes to MSTD sets. One may refer [6, 10, 13, 18, 19]
for history and overview and [5, 7, 11, 12, 20] for explicit constructions. After
Nathanson’s review of the subject [15], there has been some attention given to the
extension of the concept to finite groups and other settings [1, 8, 9, 21].
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Martin and O’Bryant [11] demonstrated that as n — oo, the percentage of MSTD
subsets in {1,2,...,n} remains above a positive constant. This breakthrough has led
to significant advancements in the field of sum-dominant sets. Though the number
of MSTD subsets of [1,n] grows quite quickly as n grows, it is challenging to find
MPTQ subsets of [1,n]. In fact, the set [1,36] does not contain any MPTQ subset.
It remains a fact that MPTQ sets have not been studied widely compared to MSTD
sets. Exploring the concept of MPTQ sets can yield valuable insights and uncover
new findings about MSTD sets.

In this paper, we shall discuss various properties of MPTQ sets, give criteria for
generating an infinite family of MPTQ sets, and identify several sets that can or
cannot be MPTQ. We extend the notion of MPTQ sets to the multiplicative group
Z,, for a prime p and recognize their correspondence with the MSTD sets in Z;,; for
a prime p. We also justify that Z,) contains an MSTD set of cardinality ¢(n)/2
for each n € N, with ¢(n) > 12, of the form p* or 2p*, where p is an odd prime and
keN.

2. NOTATIONS

The following notations will be used throughout.

e We write b — A to mean the adjoining of the number b to the set A that
yields the set AU {b} provided b ¢ A and we denote AU {b} by A’.

e Given a set A of positive real numbers and r # 0 define A" = {a" : a € A}.

e Given a set B of real numbers and 1 # r > 0, define rZ = {* | b € B} and
we call it the r — exponential transformation of B.

e Given a set A of positive real numbers and 1 # r > 0, define log, A =
{log, a | a € A} and we call it the r — log transformation of A.

e Given a set A C R and numbers A, i with X\ # 0, we define the dilation of A
tobe AxA = {Aa : a € A} and translation of Atobe A+u = {a+p:a € A}.

o NA=|A/A| - |A.A|

e Forn € Nand r € R~ {0,+1}, we denote by G(r,n), the geometric progres-
sion {1,772, ..., r" "1}

e We write MPTQ(Z,,) and MQTP(Z}) for the collection of product-dominant
and quotient-dominant sets in Z, respectively.

3. SETS THAT ARE NOT PRODUCT-DOMINANT

A property of a set is an affine-invariant if it remains unchanged under a dilation
followed by a translation. The property of being an MSTD set is affine-invariant
[15]. However, the same is not true for MPTQ sets. In fact, given a set A C R and
a number A with X\ # 0,

[(Ax A).(Ax A)| = A2 % (A.A)| = |A.A], and |\ x A)/ (A x A)| = |A/A.

i.e. the cardinalities of the product and quotient sets of A are invariant under
dilation. However, in general, the cardinalities are not preserved under translation.
Therefore the property of being an MPTQ set is not affine-invariant.

Example 3.1. The set A = {1,22,23 24 27 211 212 9141 s an MPTQ set, but
B=A+1={2,5,9,17,129,2049,4097, 16385} is not, as |B.B| = 36 < 57 = |B/B|.
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Let A = {a1,aq,...,a,} be a set of positive real numbers with a1 < ag < ... < ay.

n

a
We choose a real number b > —. With b — A, we get n + 1 new products,
a1
bai < bay < ... < ba, < b2,

and 2n new quotients,

b b b b
—>—>...> >
ai a2 ap—1 an

along with their reciprocals.

2
—L then with b — A, we get n + 1 new
an

Similarly, if we choose a number 0 < b <
products,

b2 < bay < bag < ... < bay,
and 2n new quotients,

b b b b

— < << =< =,

Ay Ap—1 az ai
along with their reciprocals. Thus, in either case, we get
(1) ANA' = NANA+n—1.

So b — A does not yield an MPTQ set unless AA < —n. Therefore, in order to
construct an MPTQ set by b — A, where A is a set of positive reals with AA > —n,
the number b must be chosen such that

(min A)?

max A

(max A)?

< b <
~— minA

or equivalently,

(min 4)3 < b (min A) (max A) < (maxA)3.

Definition 3.2. [3] A set A is said to be symmetric with respect to b if there exists
b e R~ {0} such that A=10b/A.

Since |A.A| = |A.(b/A)| = |A/A|, a symmetric set is always balanced.

Remark 3.3. Let A = {a1,a2,...,a,} be a symmetric set of positive integers with
a; < ag < ...<ap. Ifb > 1 is an integer having a prime factor p with (p,a;) =1
for each i,1 <1i <n, then b — A yields n + 1 new products, and 2n new quotients.
So A’ is not MPTQ.

Thus, to construct an MPTQ set of positive integers by b — A, the number b must
be chosen such that (Z—i] <b< L%j, and it does not have any prime factor other
than those appearing in the factorization of a;’s, 1 <1i < n.

Most of the examples of MPTQ sets listed in [3] are obtained by b — A, where b
is a suitable positive integer and A C {2™3" : m,n > 0} is symmetric. From above
observations it follows that b can only be chosen among the numbers of the form
2"3% with r,s >0, 2a —z <r <2x —a, 2b —y <s <2y —b, where 2¥3Y = max A
and 273° = min A.

Example 3.4. A = {4,9,16,18, 24,162,216, 243,432,972} C {2™3" : m,n > 0} is
symmetric with respect to 235 = 3888, and by 36 — A, the resulting set A' is an
MPTQ set with |[A.A| =52 > 51 = |A/A|.
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But there are also symmetric subsets of {2™3" : m,n > 0} for which b — A does
not result in an MPTQ set for any choice of the positive integer b.

Example 3.5. A =1{1,2,4,6,9,18,36} is symmetric with respect to 36 but for any
integer b with 1 < b <1296, b — A never gives an MPT(Q set.

4. CONSTRUCTION OF AN INFINITE FAMILY OF MPTQ SETS

We shall discuss a technique using which we can generate infinitely many MPTQ
sets starting with one.

Proposition 4.1. Let A be an MPTQ set of positive integers. Let p1,pa, ...,

pr be the distinct prime factors of the numbers in A. Then the set obtained from
A by replacing each of the primes p1,ps,...,pr respectively with r distinct pairwise
coprime numbers by, ba, ..., b, is also an MPTQ set.

Proof. The proof follows from the fact that
vk ok = bl b = (B ke, Ke) = (D2, l)
= p]flpé“?...p’;r = plfplf...pl;. |

In particular, we may switch the primes p1,ps,...,pr in A among themselves in
order to get an MPTQ set.

Example 4.2. A = {4,9,16, 18,24, 36,162,216, 243,432,972} C {2™3" : m,n >
0} is an MPTQ set. By switching 2 and 3 in A, we get an MPTQ set B =
{4,9,12,32, 36,48, 54,81, 216, 288, 648}.

Corollary 4.3. Let A be an MPTQ set of positive integers. Let p1,pa,...,p, be the
distinct prime factors of the numbers in A. Then the set A™ obtained from A by
replacing p; with pi for each i,1 < ¢ <, is an MPTQ set.

Example 4.4. The set A = {4,9,16, 18,24, 36,162, 216, 243,432,972} is an MPTQ,
so is A2 = {16,81, 256,324, 576, 1296, 26244, 46656, 59049, 186624, 944784}

Extending the above idea to rational numbers, we can replace p1, po, . . . , pr respec-

b1 b b
tively by r distinct positive rational numbers a2 , — where by, dy, by, d,

d17d727... d/r ceey
b, d, are all pairwise coprime, to generate an MPTQ set of rational numbers.

We shall mention the following lemmas for ease of reference.
Lemma 4.5. [3] Let A be an MSTD set. Then for alll #r >0, B =714 is MPTQ.

Lemma 4.6. [3] Let A be an MPTQ set of positive numbers. Fiz 1 #r > 0. Then
B =log, A is MSTD.

Corollary 4.3 shows that if A is MPTQ, then so is A™. Our next result shows
that the same is true even if we replace n by any nonzero real number and this is a
consequence of the above two lemmas.

Proposition 4.7. Let r € R~ {0}. A finite set A of positive real numbers is an
MPTQ set if and only if A" is an MPTQ set.

Proof. For a given r € R~ {0},
a finite set A is MPTQ <= log, A is MSTD
<= rlogy A is MSTD
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<= logy A” is MSTD
— A" is MPTQ. O

Using the above result one can generate infinitely many MPTQ sets starting with
one. It also confirms the existence of MPTQ sets consisting of only perfect squares
by taking r = 2.

The interesting fact is that no MSTD set with only perfect squares has been found
in the literature. However, we can construct balanced sets of cardinality 2k with
perfect squares for every natural number k.

A natural number n can be expressed as a sum of two perfect squares if it has
the form,

n=2pi"p3* . p2ral gy . qP,
where p; and g; are primes of the form 4k 4 3 and 4k 4 1 respectively, [, a; and b;
are non-negative integers. If B = (by + 1)(ba +1)...(bs + 1), then the number of
representations of n as a sum of two perfect squares is,

if any a; is half-integer;
B if all a; are integers and B is even;
(B — (—1)%) if all a; are integers and B is odd.

riln) =

= N= O

Example 4.8. 2465 is a number that can be written as a sum of two perfect squares
i 4 different ways:

82 + 49°

162 + 47?
232 + 442
= 282 4412

2465

The set A = {82,49%,162, 472,232 442 282 412} is balanced with |A + A| = 33 =
14— Al

Similarly using the summands from the expression of 8125, which is a sum of per-
fect squares in 5 different ways, we get the set {90%, 52, 692, 582, 852, 30%, 272, 862, 752,
502}, which is also balanced with 51 sums and differences.

More generally, let n be a number written as sum of 2 squares in k different ways:

no=al+b} = ai+b3 = ... = a} +bi.

Let A= {a},a3,...,a},b%,b3,...,b2}. Equality of two sums gives rise to four equal
differences in A — A and there are (k — 1) + ...+ 2 + 1 such equalities in A + A,
each of which yields four equal differences in A — A. Suppose, these are the only
equalities among the sums in A + A, then we get the following:

|A+A| = |A+A‘max_(k_1)
_ 2k(2l;+1)_(k_1)

= 2k*+1,

747



748

Anupriya Shetty and Shankar B R

and
-1
A= A] = A~ Al — 4D
= 2k(2k —1)+1—2k(k —1)
2k% +1,

where |A 4+ Almaz and |A — Aljnae denote the the maximum possible cardinality of
A+ A and A — A respectively. Here |A+ A| = |A — A], so A is balanced. Thus, we
can construct balanced sets of cardinality 2k with perfect squares for every natural
number k using all the summands in the expression of a number that can be written
as a sum of two perfect squares in k different ways.

The question: is there an MSTD set consisting of only perfect squares? can be
restated as follows.

Problem 4.9. For the binary quadratic forms f(x,y) = 22 +y? and g(x,y) = 2% —y>

in variables x and y, determine whether there exist sets of integers A, B and C with
|C| > 2 such that

[F(A)] < 1g(A)];
[f(B)l > |9(B)],
IF( )] = 19(O)]-

The above problem is similar to the questions posed by M. Nathanson [14] and it
has been completely solved for every pair of normalized binary linear forms f(x,y) =
wiz + ny and g(x,y) = usx + vey with integer coefficients [16].

Let P denote the set of all primes. If A C P is MPTQ), then the removal of one of
the elements of A would still give an MPTQ set. This is a contrapositive version of
the Remark 3.3. Since the smallest cardinality of an MPTQ set of positive numbers
is 8 (Theorem 1.4, [3]), we can conclude that an MPTQ set of primes does not exist.
However, there exist MSTD sets consisting of primes. In [5], we find an MSTD set
{19,79,109, 139, 229, 349, 379,439} of primes. As P does not contain any MPTQ
set, we have the following corollary of Proposition 4.7.

Corollary 4.10. For any r € R~ {0}, the set P" does not contain any MPTQ set.
In particular, a set consisting of n'* powers of primes is never an MPTQ.

The above corollary holds good even if we replace P by a set consisting of positive
integers that are pairwise coprime.

5. GEOMETRIC PROGRESSIONS OF POSITIVE REAL NUMBERS

For n € N and r € R~ {0, %1}, consider the geometric progression G(r,n). Being
symmetric with respect to r" 1, G(r,n) is balanced. Also, b — G(r,n) does not form
an MPTQ set for any b € R \ {0} as proved in [3]. We shall show that adjoining
two distinct positive real numbers to G(r,n), does not give an MPTQ in the case
when 1 # r > 0.

Proposition 5.1. Let n € N, and 1 # r > 0. For any two distinct positive real
numbers x and y, the set G(r,n)" = G(r,n) U {z,y} is not MPTQ.

Proof. Consider the geometric progression G(r,n) and two distinct positive real
numbers z and y. Consider the set logy G(r, n) obtained by 2 — log transformation of
G(r,n). We note that log, G(r,n) forms an arithmetic progression with the common
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difference log, 7. Now the set log, G(r,n)" obtained by log, x, logyy — logy G(r,n)
is not an MSTD using the result proved in [2] that says an arithmetic progression in
union with two arbitrary real numbers is not an MSTD. As 2 — log transformation
of an MPTQ set has to be an MSTD, it follows that G(r,n)" is not an MPTQ. O

More generally, any finite set of positive numbers in a geometric progression in
union with two distinct positive real numbers z and y is not an MPTQ. Further,
it has been proved in [4] that the union of two arithmetic progressions with the
same common difference is never an MSTD. Hence, the union of two geometric
progressions of positive real numbers with the same common ratio can not be an
MPTQ set.

6. MPTQ SETS IN Zj,

Almost all previous research on MSTD sets focused exclusively on the integers, as
opposed to other abelian groups. The first ever paper in which MSTD sets in finite
abelian groups are considered is by Nathanson [15], who showed that families of
MSTD sets of integers can be constructed from MSTD sets in finite abelian groups.
Recent progress on MSTD sets in Z, can be found in [17, 21]. We consider the
multiplicative group Z; for a prime p and imitate the idea of MPTQ sets.

For each prime p, the map f : Z,_1 — Zj given by f(n) = a", where a is a
generator of Zy, is a group isomorphism. So if A is an MSTD in Z,—1 then f(A) is
an MPTQ in Zj and vice versa. The group Z; has exactly ¢(p — 1) generators so
we have ¢(p — 1) isomorphisms from Z, ; to Zj.

Example 6.1. The set A = {0,1,2,4,5,9} is MSTD in Zq3. So the sets f(A),
under the above map for a = 2,6,7,11 respectively, {1,2,3,4,5,6},{1,2,5,6,9,10},
{1,7,8,9,10,11} and {1,3,4,7,8,11} are all MPTQ sets Z;5.

Due to the above isomorphism, the number of MPTQ sets in Z; is equal to the
number of MSTD sets in Z,_1. The smallest additive cyclic group containing an
MSTD set is Zi2, so the smallest prime number p for which Z;‘, contains an MPTQ
set is 13.

For any A C Z with |A| > g, AA=AJA=T; So Ais never an MPTQ.

Computations performed using Python Programming give the data presented in the
following tables. Table 1 shows the number of MPTQ, MQTP, and balanced sets in
Z,, for the first 9 primes p, and Table 2 represents the number of MPTQ sets of all
possible cardinalities for all primes p upto 23.

749



750

Anupriya Shetty and Shankar B R

TABLE 1. Number of MPTQ, MQTP and balanced sets in Zj, for
small values of p

Prime p | [MPTQ(Z;)| | IMQTP(Z;)| | No. of balanced sets
p=2,3,5 0 0 L |

7 0 12 o1

11 0 320 703

13 24 1380 2691

17 384 20288 44863

19 792 75702 185649

23 15224 943008 3236071

TABLE 2. Number of MPTQ sets in Z, of different cardinalities for
small values of p

‘ Prime p | n | No. of MPTQ sets of cardinality n | [ MPTQ(Z;)|
’ 13 6 24 24
17 7 256 384
8 128
7 108
19 8 432 792
9 252
7 220
8 2640
23 9 6160 15224
10 4840
11 1364

For every prime p > 13, consider the following sets:

A =

Ay =
A3 =
A =

p—1
1,2,...,——
o, 20,
p+1
5 ooy — 1}
{2747"'ap_1}7

{1,3,...,p—2}.
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Foreachi,1 <i <4, A;.A; = Zy, and A;/A; = Z3\ {p—1}. So each A; is an MPTQ.
This confirms the existence of MSTD set of cardinality (p —1)/2 in Z,_; for each
prime p.

Lemma 6.2. For each prime p > 13, MSTD(Z,—1) is nonempty.

More generally, for each n € N, with ¢(n) > 12, of the form p* or 2p* , where p is
an odd prime and k € N, the additive group Zg,) is isomorphic to the multiplicative
group U(Zy,). So the number of MSTD sets in Z(y) is equal to the number of MPTQ
sets in U(Z}). The set containing first ¢(n)/2 elements of U(Z}) is an MPTQ in
U(Zy,). Therefore Zy, contains an MSTD set of cardinality ¢(n)/2.

Lemma 6.3. For each n € N, with ¢(n) > 12, of the form p* or 2p*, where p is an
odd prime and k € N, Zy(,,y contains an MSTD set of cardinality ¢(n)/2.

7. CONCLUSION

In Additive Number Theory, the study of MSTD sets has received great attention
in the recent past. One can explore more about MSTD sets in R and Z,_; using
the notion of MPTQ sets in R\ {0} and Zj respectively. In this regard, we have
shown several ways of constructing an infinite family of MPTQ sets, a method
of constructing balanced sets of perfect squares, and presented an open problem
on binary quadratic forms. We have listed the number of MPTQ, MQTP, and

balanced sets in Zj for the first 9 prime numbers. Though we can establish a

connection between MSTD sets and MPTQ sets via r — exponential transformation
and r — log transformation, these transformations do not preserve integers. So, there
are still numerous non-trivial questions that can be explored regarding MPTQ sets.
We conclude with some questions for future work:

e What is the minimum number of elements to be added to a symmetric set,
in particular to a finite set of numbers in geometric progression, to form an
MPTQ?

e What is the minimum cardinality of an MPTQ set of integers?

e Is there a set which is both MSTD and MPT(Q modulo a prime number p?
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